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Abstract. For any formal commutator R of a free group F', we constructively prove the existence of a
logical formula £r with the following properties. First, if we apply the collection process to a positive
word W of the group F, then the structure of £r is determined by R, and the logical values of Er
are determined by W and the arrangement of the collected commutators. Second, if the commutator
R was collected during the collection process, then its exponent is equal to the number of elements of
the set D(R) that satisfy £r, where D(R) is determined by R. We provide examples of Er for some
commutators R and, as a consequence, calculate their exponents for different positive words of F. In
particular, an explicit collection formula is obtained for the word (a1 ...an»)™, n,m > 1, in a group with
the Abelian commutator subgroup. Also, we consider the dependence of the exponent of a commutator
on the arrangement of the commutators collected during the collection process.
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Introduction

continue our research [1] on the collection process, the concept of which was introduced by
P.Hall [2]. Let W be a positive word of the free group F = F(ay,...,a,), n > 2, i.e. W does not
contain inverses of ay,...,a,. By rearranging step by step consecutive occurrences of elements
in W with use of commutators: QR = RQ[Q, R], Q, R € F, the collection process transforms W

into the following form:
W =g ...q7 Ty, j=1, (1)

where q1, ..., g; are commutatorsin ay, . . ., a,, arranged in order of increasing weights, T} consists
of commutators of weights not less than w(g;) (the weight of ¢;), the exponents es,...,e; are
positive integers. Further we will not impose restrictions on the arrangement of g1, ..., g;.

Research is developing in two directions. The first one is connected with divisibility properties
of the exponents e, ..., e; for some words W. In [2, Theorems 3.1 and 3.2 the application of
the collection process to the word W = (a1a2)™, m > 1, leads to the formula

(a1a9)™ = qf} qué;) (mod T's(F)), s=2, (2)

where T's(F) is the s-th term of the lower central series of F, which is defined as follows:
I'(F)=F,Tw(F) = [['kx_1(F), F], k > 2, and the exponents of the commutators are expressed
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in the following form:

= 3 (7): ®)

k=1

where non-negative integers c; do not depend on m. This result is significant for the the-
ory of p-groups, since the expression e;(p®) is divisible by the prime power p® if w(g;) < p.
In [3, Theorem 12.3.1] the same result is obtained for the word (a; ...a,)™, n > 1. In [4, The-
orems 5.13A and 5.13B]| a similar formula with divisibility properties of the exponents of the
commutators is proved for W™, where W is an arbitrary word (not necessarily positive), m > 1.
The work [5, Lemma 4] devoted to nilpotent products of cyclic groups and also the works [6, 7]
consider the word W = a]"' ay" (with some restrictions on my, my > 1) for which some divisibil-
ity properties of the exponents of the commutators are obtained. The author’s work [1] proposes
an approach to studying the exponents e; in (1) and gives generalizations of the above results
using this approach.

The second direction is connected with an explicit form of the exponents e; in the P. Hall’s
collection formula (2) and, as a consequence, with explicit collection formulas (2) in groups with
some restrictions (solvable length, nilpotency class of the group, etc). For example, the explicit
formula

(araz)™ = a}ay[az, a;)(3)

is well known for a group G, where a1,as € G, [az,a1] € Z(G). Formula (2) and the exponent
(le) of the commutator [ag, ;a1], ¢ = 1, have been used to prove the (p — 1)-th Engel con-
gruence [ag, p—1a1] = 1 (mod I'p41(G)) for a group G of prime exponent p, which was the key
to investigation of the restricted Burnside problem for groups of prime exponent p [3, p. 327].
With use of the exponents for more complex commutators, the 14-th Engel congruence has been
proved for groups of exponent 8 in [8,9]. Also, explicit collection formulas (2) for groups with
some restrictions are considered in the works [10-13]. The explicit formula (2) for a group where
any commutator with more than two occurrences of as is equal to 1 has been used to prove the
non-regularity of the Sylow p-subgroup of the general linear group GL,,(Z,m) for n > (p+2)/3
and m > 3, when (p + 2)/3 is an integer [14]. This has lead to partial solution to Wehrfritz’s
problem [15, Question 8.3]. The exponents for several series of the commutators in (2) have been
found in an explicit form in the author’s work [16].

In this paper, for any formal commutator R of the group F(as,...,a,), we constructively
prove the existence of a logical formula £r using which one can calculate the exponent of R
using information about the initial word W in the collection process and the arrangement of
the collected commutators ¢i,...,q; (Theorem 1). The formula g has the following properties.
First, its structure is determined by R, and its logical values are determined by the word W and
the arrangement of the collected commutators. Second, if R was collected during the collection
process, then its exponent is equal to the number of elements of the set D(R) that satisfy the
formula Er, where D(R) is determined by R. We provide examples of g for some commutators
R (Lemmas 1, 2) and, as a consequence, calculate their exponents for different positive words
(Theorem 2). In particular, an explicit collection formula is obtained for the word (a; ...an)™,
n,m > 1, in a group with the Abelian commutator subgroup (Theorem 3). Also, we consider the
dependence of the exponent of a commutator on the arrangement of the collected commutators
qi,---,q; (Corollary 2).
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1. Basic notation

In this paper we use the concepts formally defined in Sections 2 and 3 of the article [1]. The
basic properties of the collection process and examples are also given there. In this section we
will briefly describe some important concepts.

The collection process is a construction of the sequence of words:
W()ETQ, W1 qulTl, W2 EQ?QSQTQ, ey Wj :qfl...qjjTj7 (4)

by the following rules. The initial word W is a positive word of the free group F' = F(ay, ..., an),
n > 2. All occurrences of the letters ay,...,a, (commutators of weight 1) have labels (integer
sequences) assigned to them, and different occurrences of the same letter have pairwise different
labels of the same length. Let ¢; be an arbitrary commutator from the uncollected part Tj_;.
The word W;, j > 1, is obtained from W;_; by moving step by step all the occurrences of g; to
the beginning of the word T;_; with use of commutators:

where A, A, is the concatenation of the labels A, and A,.

Denote by D(ay), k € 1,n, an arbitrary fixed set of integer sequences of the same length that
contains all labels of the occurrences of a; in W,. Assume that a commutator R arose during

the collection process (4), and the parenthesis-free notation of R is (a;,, .. ). Then any

© Qi ()
occurrence of R has a label that belongs to the Cartesian product D(R) = D(a;, )X+ -x D(ai,, ) )-

Suppose that some uncollected part in (4) contains an occurrence of the commutator R. The
evistence condition of the commutator R is the predicate E%, A € D(R), that is equal to 1 iff
there exists a word in (4) such that its uncollected part contains the occurrence R(A).

Suppose that some uncollected part in (4) contains occurrences of the commutators R and
Q. The precedence condition for the commutators R and @) is the predicate Pé\lé\z, AAs €
D(Q) x D(R), that is equal to 1 iff there exists a word in (4) such that, in its uncollected part,
Q(A1) precedes (is to the left of) R(As).

For the exponent e;, j > 1, in (4) we have
¢; =|{A € D(g) | Ej, =1}]. (5)

Let Ry, Ry be formal commutators. The predicate Ry < Ry is equal to 1 iff there exist
commutators ¢;, ¢; in (4) such that ¢; = R1, ¢;j = R, i < j, i.e., the occurrences of Ry were
collected at an earlier stage than the occurrences of Ry in the variant of the collection process (4).

In [1, Theorem 4.6] the following recurrence relations for the existence and precedence con-
ditions were proved. We will use these relations further.

Suppose {W; = qf* ...qj.j T;} ;>0 is an arbitrary variant of the collection process. Then the
following recurrence relations hold (if the left-hand side of a relation is defined for {W;},>0):

u—1

Af. AL pAAL Af A .

B m = Pal R, RiR 0 4= L (6)
k=1
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A1 AlA2 A2
(Qrru R Qa, o o] 1S €QUAL tO

AS.. A} A2...A2

By umn EiQs, o > futv>1, Ri=Ry Q=02 (7a)
pho-AL pASL AL pAGAS ifutv>1, R =Ry Q1 #Q2, (7b)
[Q1,uRi1] [Q2 sz] Q1,Q2° u=0= w(Ql) =L v=0=w(@) =1
Ab. AL A2 AL ALAZ . .
E[Ql,uRl]E[Q2,vR2] [QO1,uR1],OQQ’ ifu,v 21, Ry < Ro; (7C)

ALLAL AZL A2 ATAZ A2 . .
E[Qol,uRl]E[Qovaz]PQf,[CO?szQ]’ if u,v 21, Ry < Ry (7d)

where [Q1, ,R1] # Q2 for u > 1 and [Q2, ,R2] # Q1 for v >

Ay € D(Qy), A2 € D(Q2), Af,...,AL € D(Ry), A},..., A2 € D(Ry),

u min{u,v} k—1
AL A0 A AL
= PQl Q2 (A1:A2 ( ’U,<U /\ A2 :Allc)\/ \/ Rl,sz A(A}%:A}L)>
k=1

h=1

2. Universal existence condition

Let us fix a variant of the collection process {W;};>0. In [1, Corollary 4.8] it was proved
that using relations (6)—(7) one can express the existence condition Er by a formula containing
at most the operations conjunction and disjunction, the predicates Fy,, Py, ; and the equality
relation on Z.

Assume that we did not use relations (7c¢) and (7d) during the process of expressing Er. If we
change the variant of the collection process {W;},>¢ (change the initial word or the arrangement
of the collected commutators), then the process of expressing Er will be exactly the same.
Therefore, the resulting formula (as a construction of symbols A, V, =, predicate symbols E,,,
Py, ;) is an invariant with respect to a variant of the collection process. More precisely, if R arose
during some collection process {W;};>0, then all predicate symbols Eq,, P,, 4, in the formula
are defined only by the initial word Wy, and the formula in its logical values coincides with the
existence condition Fr. Besides, since equality (5) holds, the exponent of R depends, perhaps,
on the choice of the initial word, but not on the arrangement of the collected commutators.

Our aim is to construct such invariant formula for any commutator R. We now allow the
formula to contain a symbol <. Let us replace relations (7c) and (7d) with

Ag- ALAZ A2 Ay AL LAZ.AZ A JALAZ A SAZ. A2
[leuRl] [Q2”;R2] E[QOlvuRl]E[Q2 vRQ] <(R1 = RQ) Q Rl] Q2 V(B2 < B1)P, Q1 [Q2”;R2]> (8)

If we now use relations (6), (7a), (7b), (8) to express Er, then on each step our choice of the
desired relation does not depend on the arrangement of the collected commutators. However,
there is a problem: the predicate symbols Pq,  r,1,q, and Pg, (@, r.] are not necessarily defined
simultaneously. For example, Ry was collected earlier than Ry (i.e. R; < Rs) during some
collection process, and we have come across the predicate Piq, ., r,).[Q.,.r,) during the process of
expressing Er. Then relation (7c) holds, but the predicate Py, [q,,,r,) from (7d) is not defined
if there does not exist an uncollected part containing both occurrences of Q1 and [Q2, ,R2] (see
definition of the precedence condition). Thus, we can not continue the process of expressing Er.
To overcome this problem, we introduce the following definitions.

- 368 —



Vladimir M. Leontiev On the Collection Formulas for Positive Words

Definition 1. For any commutators Ry, Ra, we call the interpretation of the predicate symbols
ERI’ PR1,R27 = (9>

the standard one with respect to a variant of the collection process {W;}i>o if they are defined
according to the definitions in Section 1 formulated for {W;};>o.

The predicate symbol < admits the standard interpretation with respect to any variant of
the collection process {W;}i>o. The same can not be said about the symbols Er,, Pr, r,. In
the first case, the occurrences of Ry might not have arisen during the collection process. In the
second case, the occurrences of R; and Ry might not have arisen in the same uncollected part.

Definition 2. Suppose A is a formula containing at most the symbols N, V, =, the predicate
symbols (9). We say that the standard interpretation of the formula A with respect to a variant
of the collection process {W;}i>o is given if the symbol = is interpreted as equality, all predicate
symbols in A that allow standard interpretation with respect to {W;}i>o are interpreted that
way, the rest symbols (they can be only Er, and Pg, r,) are interpreted as predicates defined
arbitrarily on the sets D(Ry) and D(R1) x D(Rz), respectively.

Theorem 1. Suppose R is a formal commutator of the free group F(aq,...,a,), n > 2. Then
there exists a formula Eg with the following properties:

1. Eg contains at most the operations of conjunction, disjunction, and the following predicate
symbols:

Eai» Pai,aja —<, :) Z?] 6 13”' (10)

2. If occurrences of R arose during some variant of the collection process, then, for the stan-
dard interpretation of Eg with respect to this variant of the collection process, the following
equality holds:

EA=FE),  AeD(R). (11)

Proof. Consider the system of recurrence relations (6), (7a), (7b), (8) as formal relations of
predicate symbols. Fix formal commutator R.

Let a formula A contain at most the operations of conjunction, disjunction, the symbol =,
the predicate symbols (9). We say that A has property (M) if, for any variant of the collection
process {W;}i>o during which R arose, the equality

AN=ES  AeD(R), (12)

holds for any standard interpretation of A% with respect to {W; }i>o0.

Let us describe inductively the process of constructing the sequence of formulas {Z-AJI\%}@O:
1) AN = E%; 2) the formula ;1A% is obtained from ;A% by replacing any predicate symbol of
type Er, or Pr, r,, where w(Ry), w(Ry) > 2, in ;A% with the corresponding formula according
to relations (6), (7a), (7b), (8). The sequence is finite and ends with the formula satisfying
statement 1 of the theorem. This fact follows from the proof of Corollary 4.8 [1].

We prove that the formulas Z—A% has property (M) by induction on ¢. For i = 0 the statement
is true, since oAg = Eﬁ and the predicate symbol Ef;\{ is standardly interpreted with respect to
any variant of the collection process during which the commutator R arose. Assume that iA%
has property (M) and the formula ;41 A% is obtained by replacing a predicate symbol P in ;A%
with the corresponding formula.

Let {W;}i>0 be a variant of the collection process during which the commutator R arose,
and the symbol P does not allow the standard interpretation with respect to {W;};>0. It is
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known that the equality ;A% = EI/;, A € D(R), is true for any standard interpretation of Z-A%
with respect to {W;}i>0, in particular, the equality holds for any interpretation of the predicate
symbol P. Therefore, P can be replaced with any formula at all, and we get EI% = i+1A[1§ for
any standard interpretation of i+1Aﬁ with respect to {W;};>o0.

Now let the symbol P allow the standard interpretation with respect to {W;};>0. For any
relation (6), (7a), (7b), if the left-hand side of the relation allows standard interpretation with
respect to {W;};>0, then each predicate symbol in the right-hand side has the same property.
Therefore, if P is replaced with the corresponding formula using one of these relations, then we
have E}% =i+l A‘}}z for any standard interpretation of H—lA/}}z with respect to {W;};>0. It remains
to consider the case when P is replaced using relation (8).

If the left-hand side of (8) allows the standard interpretation with respect to {W;}i>o, then
the same is true for the predicate symbols

E[QLuRl]’ E[szRz]’ =

and at least for one of the symbols

Pigy,uR11,Q20 PQ1,[Q2,0Ra)

in the right-hand side of (8). If R; < Ra, then, first, the symbol P[gél"‘:gl/]\%z
interpreted (according to (7c)) with respect to {W;};>0, second, the predicate Ry < R; is false.
Therefore, the equality EI{EL = i+1A[1§ is true for any interpretation of the symbol Py, q,,, R, at
all, hence, for any standard interpretation of H_lA/}\% with respect to {W;};>0. If Ry < Ry, the
reasoning is analogous.

Thus, it has been proved that the last element of the sequence {iA’é}@o, which we denote
by Eﬁ, has property (M). Moreover, 51/% allows a single standard interpretation with respect

to {W;}iso0, since it contains at most the predicate symbols (10), which are always standardly

is standardly

interpreted. O

Definition 3. For any formal commutator R of the free group F(aq,...,a,), n > 2, we call the
formula £r from Theorem 1 the universal existence condition of the commutator R.

Corollary 1. If a commutator R was collected during some variant of the collection process
{W;}j>o0, then its exponent is equal to

A
{A € D(R) | &g = 1},
where the universal existence condition £5 has standard interpretation with respect to {W;};>o.

Corollary 2. Suppose the universal existence condition Er does not contain the predicate sym-
bols <. Let {W;}j0, {Vj}jz0 be two variants of the collection process with the same initial
word. If R was collected during both {W;},;>0 and {V;};>0, then its exponent is the same in both
cases.

3. Examples

In this section we find the universal existence condition £g for several series of commutators
using the proof of Theorem 1. Namely, we construct a sequence of formulas that satisfy property
(M). The sequence starts with Er and ends with a formula satisfying statement 1 of Theorem 1.
As a consequence, we get the exponents of these commutators in different collection formulas in
an explicit form.
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Lemma 1. For j,iy,...,is €{1,...,n} and uy,...,us > 1, where n,s > 1, we have
oot = At A NG 3
[ajaulai17 ausazs J7a7k %7‘1% .
k=1 h=1

Proof. We use induction on s. For s =1 we have

1 Al
ngAl..AAu ADA /\ P h+1
l[aj,ugai;] a],all CHRCIN

AoAl. AL

which coincides with the result of applying relation (6) to the symbol E[ Y'. Assume that

Qjyug Giq]

equality (13) is true for some s. Let us prove (13) for s + 1.

DAI Al As+1 .A5+1
Ugsyq

with the formula
[CL suq Qig e 7u9+1a1§+1]

Using (6) replace E

Ust1—1
1 1 ] 5 AS+1 +1 4 s+1
AoAl..AAul...Ai...A;SA1 /\ AS A;+1
[ajvulail1<~-7u5ais]7ais+1 Figp1oPigyy”
h=1

Now we use (7a) if a; = a;_, ,, otherwise we use (7b), and get the same result in both cases:

u +171
1 1 s as 1 1 1 s—1 ss—1 s+l Us g_H st1
AoAL AL LASLLAS AsFAoALLAL L ATTILALTE AS /\ AsFiASH
(@ suq @igseeerug @ig) g1 (g uy @iy seerug_y @ig_y [@ig s+17a7‘s+1.

h=1

Continuing this line of reasoning, after a finite number of steps we get the formula

—1
N 1 1 k. s+1 ap1 tetl s41 4841
/\ AOA LA, ..A “k EA PAOA /\ PA Ay (14)
[ uy am g ﬂlk] R N A A / Figp1 ®igy”
k=1 =1

Let {W;};>0 be a variant of the collection process during which the commutator
(@, uy@iys ooy ugyr @iy q] arose. Then all predicate symbols in (14) allow standard interpreta-
tion with respect to {W;};>0. For this standard interpretation, we have the following equalities
of predicates for any values of variables:

S

1 1 k k
ASFL AGASHLAGASt! /\ AoAL Al AP LAY AoALLAL LALLA
Qigyy ™ QjrQigpq = 5 AjrGig g0 [a],ulazl, ,ukaz‘k] [@5,uy Qiysensug Qi)
k=1
We apply this equalities to (14) and get

AoAL AL AS L AS st1 Us41—1 s+1 A s+1

0Ny Ny A Ay o S AQ AT /\ A ARty

[@),uy @iy sesus@ig) Ajr@igyq @igpy Figyy”

h=1

Since (14) has property (M) and the reasoning above is carried out for the arbitrary variant of

the collection process {W,};>0, then the obtained formula has propertly (1\14 ).

AoAL AL LLASLLAS

Further we should start the process of expressing the symbol E[ao_ ! o “ ai.]
oy @ig oo us Gig

AoAL AL LATLAS

Mo e with standard

. However,

by definition of the universal existence condition, the formula &,
AoAT. AL AT LAY

[agvul (141, U Sais]

[a],ulall, g Qig)
interpretation is equal to the predicate F ®. Therefore, we can use the inductive

assumption and get the formula

o Ust+1— As+H
PAOAk PA Ah+1 P + A}i:ll
Qg Qig, Qi s Qg a a'L s+1 Aigyqs@Figyy”
k=1 h=1
Collecting similar terms completes the proof. O
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Lemma 2. For s,i,j € {1,...,n}, i # j, and u,v > 1, where n > 1, we have
ALAT.ALAZAZ.. A2 A z\kJrl A Ak+1 A SAZ 1 2
5[[037uai],[as7va1] = as,al /\ a;,a; aq,a] /\ ai,a; a57as V (CLj < ai)(Ao = AO))'

Proof. We construct the sequence of formulas according to the proof of Theorem 1 starting with

ALAT.LALAZAZ. A2

[[asyuai]v[asa’uu‘jn :

Use relation (6):
ALALLALAZAZ. A2
las,uail,las,va;]

Since 4 # j, use relation (8):

ASAT.AL SAZAT A2 ASAT..ALAZ ALAZAT...A2
anuai) “Elan o] (a; < a;)P, V (a; < a;)P

[asxua’LLaé asv[as;'uaj]

Next we use (6) and (7a) twice:
v 1A2 1p2
/\ AR /\ P n ((as < ag) PATV (0 < as) (PRI v (0] = A2))).

Now we simplify the expression in brackets using logical transformations and the fact that the
expression (a; < a;) V (a; < a;) with standard interpretation is true for any variant of the
collection process during which the commutator [[as, ,a;], [as, va;]] arose. O

Theorem 2. Suppose a formal commutator R was collected during some variant of the collection
process {W;};>0 and its exponent is equal to e(R). The following statements hold.

1. IfWo=(a1...an)™, n,m =1, and R = [aj, 4,y , ..., u. .|, then
m—1
B Ao+ 1 Ao
aw=3 T ("0) 1 ()
Ao=0k=1,...,s; k=1,.
J<ip J>lk

2. IfWo = (ar...an)™, n,m 21, and R = [[as, wai], [as, va;]], © # j, then

m+6(a,j <a;)

1
MG = Oaz=a) +0(s<i) ) (A6 + I(s<)
o= Z ( u v+1 ")

Aj=1
where 4 = 1 if the proposition A is true, otherwise §4 = 0.
3. If Wy =ai™...a, nyma,...,my =1, and R = [aj, u, Qiy s - - - 0, 0i,], then
m; m;
e(R) = <U+J1> kzll_[ ( u:)a
where w = wy if there exists iy = j, otherwise u = 0.

Proof. Consider a variant of the collection process with the initial word

Wo=a1(1)...an(1)...a1(m)...an(m).
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We have

PO = (M < X)) V(A =X)(i <j), MAefl,....m}, i,jeTn
Assume that the commutator [a;, 4, a;,,

..y u,0;,] arose during the collection process. From
Lemma 1 is follows that

()\O,A%, )\il, AL OAS s )\ )\ vy s uUp—

[ajau1a117 ;usazb /\ 0 < ( 0= j < Zk /\ /\ h+1
1 1 s s

where Mg, Aj,..., A

wro AL Ay € {1,...,m}. Then the exponent of this commutator is
equal to the number of solutions of the following system

<Ao<
o < )\k<>\k A, Sm, kels, j<ig
Ao < A < M\ < ...</\uk<m, kel,s j>i

Taking into account that the number of integer sequence (1,

., Tm) that satisfy the condition
1<z <... <2, <nisequal to (Z), we get the number of solutions:

ZH (L) z (") 1 ()

Uk
k=1,...,s; Ao=0 k=1,. k=1,...,s;
J<lk J2ik J<'Lk JZik
Now assume that the commutator [[as, ,a:], [as, va;]] for u,v > 1, ¢ # j arose during the
collection process. Then by Lemma 2 we have
(Ao Ao AL NS AT LA .
Ellan wail faswas)] = (0 <AD V(g =A)(s < 1)) (A <AD) V(G = AD)(s < 1)) A
u—1 v—1

AP Yy /\ M) (Ao < A5) V(a5 =< ai)(Ag = AD))-
k=1 =

Therefore, the exponent of [[as,a:], [as, va;]] is equal to the number of solutions of the following
system:

7

//\ //\
//\ //\

Ag
A< m;
Ao — S(aj<a;) T 1< AS;

A =0 FIS AT <A <... <AL <
N =<y F1<AT < A3 < ...<>\% <

We get the following expression:

i i (m—)\(l)—i—é(s@-)) (m—)\% +5(s<j)> _

U
AG=1AF=X§—0(a;<a;)+1

1
m m7>‘0+6(a]‘ <a)Ho(s<i)—

S > 1 (m A+ 5(S<i)> (A%) _

1 2 u v
Ap=1 A5=0(s<j)
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since 0 < d(s<;) < 1 and v > 1, we change the lower limit of A2 to v and apply a well-known
summation formula:

m+5("'j <a;)

1
_ 3 m = A+ 0s<iy) (1= A6+ Oay=<ai) +0s<i) ) _
U v+1

Ag=1
change the order of summation:

m—1
_ Z Ao+ 0(s<iy\ (A0 + O(ay<an) + O(s<s) _
U v+1

Ao=1=0(a;<a;)

m+6(aj <a;)

1
_ Z )\6 - §(aj<ai) + 5(s<1') A(% + 6(5<j)
u v+ 1 .

=1
Now let us consider a variant of the collection process with the initial word

Wo=a1(1)...a1(m1) ... an(l)...an(my).

We have
PO = (< M) =)V (i <j), A€ {l,...m}, i jeTm
Assume that the commutator [a;, u @i, .-, u,ai,] arose during the collection process. From

Lemma 1 it follows that

Mo A T, AL AL

wy

s S Up—
ua) = A\ (Ao <A = i)V (j < ir)) /\ /\ (AF < AFL).
k=1 k=1 h=1

(@5 ug @iy sy ug @i
Then we get the following system:

)\0 TTL]7
>\0<)\11€<)\§ <>\uk m’Lka keﬁ; ]:Zkv
1<)\’f<)\§<...<>\uk <my, kels, j<ig.
The number of solutions of this system is equal to

mj

S0 () () E ) ()

Ao=1k=1,...,: s k=1,...,s; Ao=0 k=1 k=1,...,s;
J=ik J<ip J=ik J<ik
If none of the numbers i1, ..., i, is equal to j, then we get
ms
m 1 < )
Uk
k=1,...,s

If some 4; is equal to j (in this case 4; is unique), then the exponent is equal to

mj my,
(Ul +1> kzll_[ S(“k >
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Theorem 3. Suppose G is a group with the Abelian commutator subgroup, ai,...,a, € G,
n,m € N. Then the following formula holds:

n Z 1—[ ¢
(ay...ap)™ = . H H (@ uy @1y -y, Q) ¥=0 5= s=j+1 ,

(ulv ) n m
where M3 . = {(u1,...,un) €{0,...,m}" [uy + -+ up > 0; the first u; >0 has i < j}.

Proof. Consider the word (ag .. .a,)™ of the free group F'(aq,...,a,). Let us apply the collection
process to this word. First, we collect letters in the following order: a1, ..., a, and get the word

m m
al*...al H[aj,ulal, ey, On),

where the product is over some non-negative integers j,uq,...,u,. After that we collect the
commutators [a;, u, a1, ..., u, 0] in some fixed order. From Theorem 2 it follows that we get the
following formula in the group G:

m __ . m m =0 s= > s=j
(a1...an)" =al*...a) H H [y ur Qs - -y, Q] F=0 5= s=j+1 ,

TET (uy,cun)EMA

where it remains to find the sets J and Mﬂlm Note that the use of Theorem 2 in the case when
some ug = 0 is correct, since (g) =1 for any a > 0.

Obviously, J C {2,...,n}, since a; was collected first. Further, the expression in the exponent
is equal to 0 when ug > m + 1, therefore, we have M7, C {0,...,m}". At least one element of
the sequence (u1,...,u,) € M},
Moreover, the first u; > 0 has the index i < j, since the commutators were collected in the order

is not equal to 0, since otherwise we get the commutator a;.

ai,...,a,. Thus, the following inclusions have been proved:

JC{2,...,n},
M£7m§{(u1,...,un)6{0,...,m}”\u1+~o+un>0; the first w; > 0 has ¢ < j}.

To prove the reverse inclusions, we assume that the expression in the exponent of
(@), Q1,5 u,@n] s DOt equal to O for some sequence (j, u1,...,u). From the proof of Theo-
rem 2 it follows that there exist some values of the variables for which the formula

s Wiy —

AOA / A VAh+1
aj7alk a‘lk Qi g,

k=1 h=1

is equal to 1, where 1 <43 < ... <14, < n and u;, > 0 for any k. Therefore, in the initial word
(a1 ...an)™, there are u;, occurrences of a;,, u;, occurrences of aiQ, etc to the right of a;(Ao).
Since the letters were collected in the order a;,,...,a;,, and j > 2, iy < j, the commutator
[y s, @iy -y, @iy) = (@G ug @15 - - - 5w, Gn] aTOSE durlng the collection process. O
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O cobuparenbHbIX oOpMyJIaxX JIJIsd MOJIOXKUTEJIbHBIX CJIOB

Baagumup M. JleouTheB
Cubupckuii deiepajbHbIl yHUBEPCUTET
Kpacnosipck, Poccuiickas Peeparimst

Awunorarusi. s sroboro dpopmaabHOro KommyraTropa R cBobGomaHOM rpymnibl F MBI KOHCTPYKTUBHO
JIOKa3bIBAEM CYIIECTBOBAHME JIOTUIECKOM popMynbl Er CO CIEAYIOMMMHI CBOWCTBaMU. Bo-mepBhIX, ee
CTPOEHME ONPEeJIEJISIeTCs CTPYKTYpOoil R, a Jjlornyeckue 3HAYEHUs ONPEJIEISIOTCS IIOJIOXKUTEIbHBIM CJIO-
BOM rpymmbl F; K KOTOPOMY IPUMEHSIETCSI COOMPATEIbHBIN IPOIECC, U MOPIIKOM cO0pa KOMMYTATOPOB.
Bo-Broprix, ecium B xome cobupareabHOro mporecca 6bl1 cobpaH KOMMyTaTop R, TO ero mokasaresb
CTENEeHN PaBeH KOJIMYEeCTBY 3JeMeHTOB MHOXecTBa D(R), ynosiersopsomux Eg, rae D(R) onpenens-
ercst cTpyKTypoit R. B pabore mpuBeieHbl TpUMEPHI TAKOW (hOPMYJIBI JIJIsI pa3HBIX KOMMYTaTOPOB, KaK
CJIEJICTBUE, BBIYMCIEHBI MX MOKA3ATENN CTEMeHel st Pa3HbIX MOJOKUTEIbHBIX cjioB F'. B wactHOCTH,
[IOJIyYeHa B SIBHOM BHJIe cobuparesbHas GpopMysta s cioBa (a1 ... an)™, n,m > 1 B rpynue ¢ abeeBbM
KOMMYTaHTOM. PaccMoTpeH BOIIpoc 0 3aBUCHMOCTH IIOKA3aTe sl CTEIIeHH KOMMYTaTOpa, OT Iopsijika cbopa
KOMMYTaTOPOB B XOJ[e COOMPATEIHLHOIO IPOIECCA.

Kuaro4yeBbie ciioBa: KOMMYTaTOpP, COOMpATEIbHBIN IIPOIece, CBOOOIHAs IPYIIIA.
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